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The Mammalian Diving Response: An
Enigmatic Reflex to Preserve Life?

The mammalian diving response is a remarkable behavior that overrides basic

homeostatic reflexes. It is most studied in large aquatic mammals but is seen

in all vertebrates. Pelagic mammals have developed several physiological

adaptations to conserve intrinsic oxygen stores, but the apnea, bradycardia,

and vasoconstriction is shared with those terrestrial and is neurally mediated.

The adaptations of aquatic mammals are reviewed here as well as the neural

control of cardiorespiratory physiology during diving in rodents.
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The mammalian diving response is an amalgam of
three independent reflexes inducing physiological
changes that counter normal homeostatic control.
This remarkable behavior is called the diving re-
sponse (DR) since it was first studied in pelagic pin-
nepeds (106, 108, 215), but all aquatic mammals,
including whales and dolphins, posses this response.
Moreover, numerous studies have shown that all
mammals, including those terrestrial (Panneton
WM, unpublished observations), have a DR, from
the primitive platypus (10, 112) to humans (73, 132),
and can be extended to include all vertebrates (63,
218). For example the common laboratory rat main-
tains a brisk DR to underwater submersion (67, 159,
185); in our hands, the response is seen in 100% of
rats, 100% of the time. The hypothesis that the pur-
pose of the DR is to conserve intrinsic oxygen stores,
no matter what the species, appears evident to us.
The DR is based in respiration where the animals
are rendered apneic by underwater submersion.
The source of the organisms’ oxygen—a mammal
cannot breathe underwater or it will drown-is lost
underwater. Thus, to survive, underwater mam-
mals must rely on intrinsic oxygen stores bound
mostly in blood to hemoglobin and in muscle to
myoglobin. The conservative use of intrinsic oxy-
gen stores maintains aerobic metabolism; when
these stores are depleted, the diving animal has
reached its aerobic dive limit (ADL), a metabolic
threshold where diving duration goes beyond in-
trinsic oxygen stores and is marked by lactate con-
centration in blood increasing above resting levels
(22,118, 124, 200). The cardiovascular system helps
remedy this problem of anoxia. A controlled reflex
of onset bradycardia, a parasympathetic response,
is foremost and reduces cardiac output dramati-
cally, which by itself would induce a precipitous
drop in arterial blood pressure. Thus the sympa-
thetic nervous system counteracts the ensuing pres-
sure drop, and a massive peripheral vasoconstriction
commences redistributing circulating blood by re-
ducing blood flow in cutaneous, muscular, and
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splanchnic circulations, but a maintained or aug-
mented flow to the central nervous system and
heart (15, 94, 105, 256). Since these reflex behav-
iors, collectively coined the DR, are found in all
vertebrates studied (69, 119), they may be the ulti-
mate weapon organisms posses to maintain life
during asphyxia.

This review will cover only the DR of mammals,
although birds, especially ducks and penguins,
commonly are studied. The pioneering studies on
birds by Scholander (215), Folkow (70), Blix (14),
Butler and Jones (25), and their colleagues have
been reviewed previously (15, 26, 27, 63, 119, 123,
167, 198). It might be noted, however, that the
avian responses are somewhat dissimilar to those
seen in mammals in that the bradycardia and pe-
ripheral vascular responses are slower in onset
than those in mammals and may be more the
result of slower activation of arterial chemorecep-
tors rather than the rapid activation of nerves in-
nervating the face.

Adaptations of Aquatic Mammals
Anatomical Adaptations

Several anatomical adaptations that promote div-
ing efficiency are found in seals. Pinnepeds possess
an elastic and bulbous ascending aorta (aortic
bulb) hypothesized to maintain arterial pressure
during the long diastolic intervals during diving
bradycardia (53). The high volume of blood usually
seen in aquatic mammals also must be shunted
somewhere after massive peripheral vasoconstric-
tion. Many seals have developed large venous retes
in continuity with the inferior vena cava as well as
an extradural intravertebral vein (169) to store such
blood. The heads of dolphins also have extensive
venous plexi (47), possibly for the same purpose.
Many seals also have developed a caval sphincter
of striated musculature near the diaphragm to reg-
ulate venous return to the heart (64). These ana-
tomical adaptations have been reviewed previously
(15, 27, 63).
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Physiological Adaptations largest oxygen stores. Bert (15) first noted that div-
ing ducks had a much larger blood volume than
barnyard hens, an observation confirmed in sev-
eral species (128, 177). Indeed, blood volume is at
least three times greater in diving mammals. This
volume is augmented by the fact that considerably
more oxygen is bound to hemoglobin and myoglo-
bin of diving mammals than in terrestrial humans
(15, 63), such that ~9.5 times more hemoglobin is
found in diving mammals than in terrestrial mam-

If the rationale behind the DR is to preserve intrin-
sic oxygen stores (FIGURE 1), it is especially impor-
tant for diving aquatic mammals, which spend up
to 80% of their time submerged (77, 95), to bank as
much oxygen as possible. Indeed, diving mammals
do this several ways. Oxygen conservation is en-
hanced by gliding behavior (251) or descent ap-
proaches (146) in many diving species. Behavior
coordinates with physical adaptations as the ani-
mal matures; physiological factors limiting dive ~ Mals (252). Phocid seals store ~65% of intrinsic
duration are correlated with animal size and ©Xygeninblood, 28% in muscle myoglobin, and 7%
mass (21, 100, 122). Physiological adaptations in the lungs (119, 166). Despite the numerous in-
(FIGURE 2) of diving animals include increased terpretational caveats for determining hematocrit
blood volume and elevated hematocrit, hemoglobin, —and hemoglobin of mammals during diving (see
and myoglobin, whereas oxygen-use rates are mini-  Ref. 30), both increase during diving in numerous
mized via regulation of metabolism, heart rate, and  species, including those aquatic (36, 102, 246) and
peripheral vasoconstriction (26, 27, 63, 118, 119, 121).  human (5, 66, 103, 212). The increase of hematocrit
and hemoglobin during diving (202) is largely from
reflex-induced contraction of the spleen, which is

The size of oxygen stores as well as their rate of quite large and capable of storing inordinate
utilization limits aerobic dive capacity; the mam- amounts of red blood cells in diving mammals (28,
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FIGURE 1. Homeostatic control of cardiovascular hemodynamics and respiration are disrupted during underwater submersion
A: note the ~80% drop in HR when a laboratory rat (top left photograph) volunteers to dive underwater (down arrow), which persists until it sur-
faces (up arrow). The transitory increase in arterial blood pressure due to sympathetic activation can also be seen. B: respirations also cease during
diving, inducing radical changes in blood chemistry. Po, falls while underwater, whereas Pco, rises dramatically. Despite this, respiratory chemore-
ceptors that normally would increase ventilation are muted. The hypoxia in tissues deprived of blood after the selective peripheral vasoconstriction
induces anerobic metabolism, with an increase in lactic acid as by-product. Note, however, that its release into the bloodstream does not occur
until after the animal surfaces, when the stringent vasoconstriction of muscular, splanchnic, and cutaneous circulations is released. B is adapted
from Ref. 215 (and is used with permission) showing such changes in a seal (bottom left photomicrograph) during a dive.
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also increase in response to seasons and training in
semi-aquatic muskrats (137, 138, 139), suggesting
increased blood oxygen stores. Besides the in-
crease in hemoglobin and myoglobin in diving
mammals, their brains contain other globins (neu-
roglobin and cytoglobin) that are elevated com-
pared with terrestrial mammals (214, 252). This
prompted Williams et al. (252) to propose that
marine mammals recruit globins to fight hypoxia
by increasing globins in their brains. Since aquatic
mammals seldom dive beyond their ADL, however,
diving species must utilize their oxygen stores ef-
ficiently (35), with globin and hematocrit concen-
trations varying depending on behavior.
Investigations have shown the larger the myo-
globin oxygen store, the greater the aerobic dive
duration (119, 172). Muscle biomass is large in
aquatic mammals, and its metabolism is depen-
dent on oxygen. Myoglobin is an oxygen-binding
protein found in muscle tissue and is especially
abundant in diving mammals, reaching 10-30
times that of terrestrial animals (38, 92, 116, 119,
215, 225). Moreover, myoglobin stores of oxygen are
especially prominent in active diving muscles of
aquatic mammals (115, 116). Myoglobin was found
to increase significantly in cultured muscle cells from
a Weddell seal in hypoxia (52) vs. control cells, sug-
gesting skeletal muscle cells of the seal have a unique
response to hypoxia than a terrestrial mammalian

Physiological Changes in Diving Mammals
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FIGURE 2. Aquatic mammals develop several
changes to augment their intrinsic oxygen stores
The changes aquatic mammals develop to increase
oxygen stores and decrease its utilization include in-
creased blood volume, enhanced hematocrit, hemo-
globin, and myoglobin, as well as hypothermia.
Although such adaptations seldom are seen in land-
bound mammals, both aquatic and terrestrial mam-
mals share the bradycardia, vasoconstriction, and
apnea characterizing the diving response.
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cell line. DeMiranda et al. (52) speculated that a
combination of hypoxia, activity, and lipids act in
concert to increase myoglobin stores. If diving
mammals have resting oxygen saturation levels
close to 100 Torr, hemoglobin has a P, (Po, at 50%
saturation) of ~27 Torr, whereas myoglobin has a
P, of 3 Torr (49). Thus myoglobin-bound oxygen
during aerobic metabolism will be used only if the
muscle becomes very hypoxic; peripheral vasocon-
striction makes muscles ischemic and the resulting
hypoxia promotes the myoglobin-bound oxygen to
be utilized first. The DR thus maximizes the ADL at
low levels of exertion. It is unknown whether myo-
globin increases in laboratory rats after dive train-
ing, however. Thus “globins” increase in hypoxia,
whether it be in an athlete training at high altitude
or in diving mammals at sea. Utilization of intrinsic
oxygen stores recently has been reviewed elegantly
by Ponganis et al. (201).

Hypometabolism and Hypothermia

Hypometabolism has been suggested in diving
mammals, despite the difficulty in measuring it
during undersea excursions (87, 236). Diving mam-
mals experience extreme hypoxic conditions, such
that adequate levels of oxygen to supply tissues,
especially the brain (205, 214, 252), are compro-
mised. In this regard, hypothermia has been sug-
gested as a metabolic adaptation to decreased
oxygen availability (23, 24). Indeed, temperature
drops in the brain during diving in seals (16, 174,
217), as does aortic blood temperature (16, 94),
slowing metabolism while promoting survival. The
depressed metabolism in diving also induces in-
creases in antioxidant defenses to counteract gener-
ation of detrimental reactive oxygen species (74, 75).

Although all mammals possess a DR, not all
mammals have all these physical and physiological
adaptations.

Ontogeny of the Diving Response

Aquatic mammals must quickly develop both be-
havioral and physiological adaptations to cope
with their environment. Seal pups generally ex-
plore their aquatic environment first with short
shallow dives, but develop longer, deeper dives
over time, which aid their foraging skills as adults
4, 17, 21, 114, 137, 157). Behavioral ontogenetic
studies in fur seals indicate that diving capabil-
ities are dependent on age for the first 6 mo of
life and then generally on body mass (9, 100,
218). As aquatic mammals mature behaviorally
and physically, they also mature physiologically
to adapt to their environments.

Blood pH is maintained within a tight range by
buffers, which neutralize effects of small amounts
of acid or base. Diving mammals, however, can
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experience large increases in lactic acid while sub-
merged, especially if they reach their ADL. The
buffering capacity of blood of neonatal seals is
comparable to that of adults, suggesting that hy-
poxic intrauterine environments stimulate buffer-
ing capacity prenatally (129). Immature cetaceans,
pinnepeds, and penguins have only 9-31% of adult
myoglobin stores (2, 173), and thus lack concen-
trations required for extended underwater submer-
sion. However, myoglobin increases with age to
adult stores in all species, being completed espe-
cially after extended foraging behavior underwater
(173). It is thought that physical activity, thermal
demands (shivering), and hypoxia all contribute to
increased myoglobin. Total oxygen stores also in-
crease seasonally in the semi-aquatic feral muskrat
(137, 138), whose increased dependence on under-
water diving and hypoxic winter lodges promotes
myoglobin formation. However, most of these
gains were in blood oxygen capacity vs. insignifi-
cant increases in myoglobin (139).

Physiological Responses to Diving

All mammals have nervous systems that regulate
homeostatic control over breathing, heart rate
(HR), and arterial blood pressure (ABP), but these
controls are altered dramatically during diving.
Mammals become apneic upon submergence and
show an abrupt bradycardia with peripheral vaso-
constriction that is maintained during submersion
(94). Studying the physiological adaptations of pin-
nipeds and cetaceans are restricted, however, by
limitations of working in pelagic domains on very
large animals of many different species with differ-
ent ontogeny in different environments. Despite
these impediments, our interest has been the neu-
ral organization regulating these autonomic func-
tions during diving. The question has been raised
(49), however, as to why the physiological pertur-
bations to cardiovascular behavior exist at all, con-
sidering that most aquatic mammals dive within
their aerobic dive limit. Nevertheless, change in HR
is both dramatic and temporally linked to diving
behavior. Those interested in studying the physio-
logical responses of diving may be better served by
studying diving behavior in a rodent such as the
common laboratory rat, a small mammal with a
reliable diving response (159, 185) and about
which much physiology is known. Such studies
circumvent the technical impediments imposed on
studies of large, pelagic diving mammals (34).

Neural Control of Diving
Physiology

Data suggests that the DR consists of three inde-
pendent neural reflexes regulating respiration, HR,

and ABP, respectively. Pharmacological studies us-
ing antagonists/agonists show that HR and ABP
responses can be blocked selectively while preserv-
ing the other two reflexes (62, 168, 254), suggesting
the independence of these reflexes after peripheral
blockade but implying nothing about their central
integration. The three reflexes comprising the DR act
harmoniously toward preserving vital oxygen stores
and are initiated by activating peripheral receptors.
Early studies (54, 60, 79, 106, 108, 125, 130, 213, 244,
249) noted that submersion or wetting of nasal areas
was important to induce the DR, and this has been
confirmed by others numerous times.

Peripheral Receptive Fields

The autonomic reflexes of the mammalian DR can be
induced with only snout immersion, suggesting that
primary afferent fibers innervating paranasal areas
may be important. Paranasal areas (FIGURE 3), in-
cluding the anterior nasal mucosa, are innervated
by branches of the infraorbital nerve as well as the
anterior ethmoidal nerve (AEN) from maxillary and
ophthalmic divisions of the trigeminal, respectively
(250). Innervation of the nasal mucosa is via free
nerve endings from small-diameter fibers (39),
many of which contain peptides, notably calci-
tonin gene-related peptide and substance P (76,
150, 151, 197, 228, 230, 237, 238), derived from
trigeminal ganglion neurons (104, 151, 211, 230).
Most of these fibers are sensory in function, and
many respond as chemoreceptors to local chemi-
cal changes induced by inhalation of noxious gases
or inflammatory processes (43, 44, 45, 89, 101).

The AEN is considered the “gatekeeper” nerve by
us since it is the first to sense noxious gases or
water entering the nasal passages. Indeed, transec-
tion of the AEN eliminates the bradycardia and
attenuates the apnea and ABP changes to nasal
stimulation (210). This nerve contains both mecha-
noreceptors and chemoreceptors (136, 165, 221,
222, 223, 224, 229, 248) responsive to a variety of
stimuli, with fibers of small diameter in the Ay or C
range (7, 161) that reach between the epithelial
cells toward tight junctions (76, 237). The central
fibers of the AEN descend in the ventral third of the
spinal trigeminal tract (178, 184) and send fibers
into the trigeminal sensory complex. The infra-
orbital nerve also sends central fibers to all trigem-
inal sensory nuclei (190), but its distribution is
much wider than the AEN. Although currently un-
known, it is probable that similar distributions ex-
ist in aquatic mammals.

Central Integration

The sensory stimulus is linked to motor output via
a reflex arc, “a route followed by nerve impulses in
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the production of a reflex act, from the peripheral The trigeminal sensory complex is the principal
receptor organ through the afferent nerve to the relay for somatosensory afferent fibers innervating
central nervous system synapse and then through structures in the head (6, 140, 141, 149, 182, 227).
the efferent nerve to the effector organ.” However, = The central projections of the AEN have been stud-
peripheral physiologists, who know the stimulus ied in several nonaquatic species (3, 98, 135, 178,
(underwater submersion) as well as the output (ap- 184, 220). These studies (3, 135, 178, 184, 210)
nea, bradycardia, peripheral vasoconstriction) sel- generally show dense projections into superficial
dom explore central integration. laminae of the medullary dorsal horn (MDH) of the
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FIGURE 3. Work on diving rodents suggest paranasal areas (shaded blue) innervated by the anterior ethmoidal and infraor-
bital nerves are important for initiating the diving response

These nerves project [A1 and A2 show transport of an HRP cocktail (colored gold) transported transganglionically from the anterior ethmoidal and
infraorbital nerves, respectively] into the rostral medullary dorsal horn (MDH) overlapping the caudal subnucleus interpolaris (Sp5I). Note the band
of neuropil just dorsal to the Sp5I (arrows) is labeled from either nerve. Neurons activated with cFos (A3; small black nuclei) induced by diving are
found in similar neuropil. Moreover, small, bilateral injections of lidocaine (blue squares) or kynurenate (red circles) made into similar locations (A4)
blocked the cardiorespiratory responses of nasal stimulation. The hallmark of the diving response is the dramatic bradycardia (see FIGURE 1A);
many neurons surrounding the rostral nucleus ambiguus are labeled with cFos after diving (B1), and some of these are preganglionic cardiac mo-
toneurons (B2; arrows point to double-labeled neurons containing cFos and a retrograde tracer injected into the pericardial sac). There also is a
massive but selective peripheral vasoconstriction during diving in rats mediated by neurons in the rostral ventrolateral medulla (C1 shows cFos-
labeled neurons in the RVLM induced by diving); many such neurons are monoaminergic (C2 showing double labeled neurons with antibodies
against cFos and tyrosine hydroxylase). The third neuronal reflex induced by underwater submergence is a profound apnea, which is maintained
despite gross disruption of blood chemistry, suggesting inhibition of the respiratory chemoreceptor reflex. Few neurons were activated in the
medullary ventral respiratory column (see C1, C2), but projections from the MDH to the ventral surface of the caudal medulla at the spinomedul-
lary junction (D2; approximately —14.6 mm from bregma) overlap where neurons/glia activated by diving are found (D1, arrows; small black pro-
files show cFos activation). Arrows in D2 point to presumptive neurons with juxtaposed BDA fibers. Injection of a retrograde tracer, which included
the retrotrapezoid nucleus labeled small neurons in neuropil similar to that labeled by paranasal primary afferent fibers (D3, arrow). Anterograde
transport of tracers injected into these areas of the MDH resulted in extremely small labeled fibers with swellings (D4, arrows) in the retrotrapzoid
nucleus ventral to the facial motor nucleus. Similar neurons/glia have long been suspected to be chemoreceptors sensitive to high Pco,, but de-
tails of how they interact with central respiratory neurons is lacking. Other studies (188) have shown the neuronal circuitry driving the diving re-
sponse is contained within the medulla and spinal cord.
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spinal trigeminal nucleus (FIGURE 3A1), with less
dense projections to rostral parts of the trigeminal
sensory complex (178, 184). The central projections
of the infraorbital nerve (FIGURE 3A2) partially over-
lap those of the AEN in the rostral MDH (190). Pan-
neton et al. (191) further showed transganglionic
transport of herpes simplex virus (HSV-1, strain 29)
from the AEN to similar trigeminal areas, as well as
transneuronal projections to brain stem autonomic
nuclei in the muskrat.

The MDH is an important relay in autonomic
reflexes such as the DR (179, 193, 254) and trigem-
inal depressor response (126, 127, 245, 255). In-
deed, underwater submersion activates numerous
neurons immunolabeled with cFos in the MDH
(158, 183, 186) in locations similar to the termina-
tion of primary afferent fibers contained within the
AEN and infraorbital nerve (FIGURE 3A3). More-
over, Panneton et al. (179, 193) showed that small
injections into similar MDH areas of either lidocaine
or kynurenate selectively inhibited the cardiorespira-
tory sequelae of nasal stimulation (FIGURE 3A4).
These data promote this area of the rostral MDH
as an important nexus in the reflex circuit driving
the DR.

Respiration

Mammals become apneic during diving such
that oxygen saturation in the blood drops rou-
tinely from 95 to 20% (128, 166, 183, 199, 202)
while the animals become increasingly hyper-
capnic (FIGURE 1). Both changes robustly in-
crease ventilation in animals on land, yet diving
animals do not breathe. Diving mammals remain
apneic despite gross alterations in blood chem-
istry (FIGURE 1B) that can exceed their ADL
(183), suggesting the homeostatic respiratory
chemoreceptor reflex is overridden. Indeed, rats
submerged underwater had their Pac, reach 79.2
Torr (normal ~32 Torr) and Pa,, reach 15.7 Torr
(normal ~95 Torr), yet the rats did not breathe
(183). Numerous laboratories are exploring for
neurons mediating the respiratory chemoreceptor
circuit, but this circuit has not been characterized
to date. The neuronal circuitry driving respiration
is complexly organized, and its efficiency in fulfill-
ing physiological needs is incompletely under-
stood (72), but a reflex apnea induced with nasal
stimulation persists despite truncating the brain at
the pontomedullary junction (188), suggesting the
neurons are contained within the medulla and spi-
nal cord. Although influences over reflex behavior
are manifested by many suprabulbar neurons, in-
cluding those important in apneic reflexes (41, 55,
56, 57, 58, 203, 204, 247), we consider them mod-
ulators rather than intrinsic to the reflex diving
circuit.

Indeed, respiratory behavior persists in many
slice preparations of only the medulla (11, 72, 206).
The medullary ventral respiratory column (8, 71)
holds many respiratory neurons, and one part of it,
the PreBotzinger complex, is where many neurons
generating rhythm lie (11, 72, 206). Neuroanatomi-
cal projections from the part of the MDH that
receives paranasal afferent fibers (184) were rela-
tively dense to caudal parts of the ventral respira-
tory column where expiratory neurons dominate.
More sparse projections from the MDH also were
seen in the pre-Botzinger complex (184), the retro-
trapezoid nucleus (FIGURE 3D3 AND D4), and the
ventral surface of the caudal medulla near the spi-
nomedullary junction (FIGURE 3D2); the latter two
groups overlapped with cells labeled with Fos in
diving rats (FIGURE 3D1; Ref.183). Although there
were but few neurons labeled with cFos in the
ventral respiratory column (FIGURE 3C1) after un-
derwater submersion (183), more anterograde la-
beling was juxtaposed to cFos-labeled “epi-glia”
cells (183), and in the retrotrapezoid nucleus
(FIGURE 3D4), where potential general and respi-
ratory chemoreceptors were found throughout the
medulla’s ventral surface and activated by under-
water submersion. Such putative chemoreceptors
are linked by gap junctions (51, 235) and may pro-
vide a fast link to the brain stem respiratory net-
work. Idiosyncrasies of the cFos technique must be
considered, however (see Ref. 186 for discussion).

The inhibition of respiration while submerged
despite gross fluctuations in blood gases is power-
ful. A persistent apnea also is created when soma-
tostatin neurons in the pre-Botzinger complex are
silenced (241), and these same somatostatin-ex-
pressing neurons project throughout the ventral
respiratory column as well as at other sites includ-
ing the retrotrapezoid nucleus (242). Although the
projection from the MDH to the pre-Botzinger
complex is relatively sparse, it is possible that it
plays a role in inhibiting the respiratory network by
both inducing and maintaining an apnea, but this
must still be proven.

Heart Rate

The dramatic bradycardia seen with underwater
submersion (FIGURE 1A) is mediated via the para-
sympathetic vagus nerve. Most parasympathetic
preganglionic cardiac motoneurons are found in
the external formation of the nucleus ambiguus
(99, 192, 243) that provide B-fibers to principal
neurons in cardiac ganglia (42, 156, 207). Double-
labeling cardiac motoneurons (181) with cFos after
voluntary diving and cholera toxin after retrograde
transport showed most of them surrounding the
rostral nucleus ambiguus (FIGURE 3B). Although
cardiac motoneurons maintain several peptide and
glutamate receptors (12, 13, 46, 110, 148), work in
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in vitro slices show preganglionic cardiac mo-
toneurons activated by stimulation of the trigemi-
nal tract are modulated by serotonin (84) and
acetylcholine (85) receptors. However, our func-
tional anatomical studies provide little information
concerning from where cardiac motoneurons re-
ceive their input. Although our earlier studies (179,
193) suggest a relay from superficial neurons in the
rostral MDH as important for mediating HR, ABP,
and respiration to underwater submersion (see
FIGURE 3A), the function of primary afferent ter-
minals of the anterior ethmoidal nerve, which proj-
ect beyond the trigeminal sensory complex (178,
184) into the reticular formation near the rostral
nucleus ambiguus and rostral ventrolateral me-
dulla, is still unknown.

Although the function of these fibers must still
be explored, apparently many contain calcitonin
gene receptor peptide and TRPV1 (40); some may
provide direct projections to cardiac motoneurons.
Moreover, investigations on postganglionic cardiac
motoneurons driven by nasotrigeminal stimula-
tion have commenced (155). McAllen et al. (155)
recorded from principal cells in the cardiac gan-
glia of a working heart-brain stem preparation
and showed their activation after applying cold
Ringer’s solution to the snout. They also con-
cluded that convergence occurs before the post-
ganglionic principal cells from various reflexes
influencing cardiac function (arterial barorecep-
tor, peripheral chemoreceptor, and diving),
probably within the brain stem.

Regional Blood Flow

The redistribution of blood supply in mammals in
response to diving shunts blood away from hyp-
oxia tolerant tissues to those with greater oxygen
need, including in diving rats (175, 176). Blood
supply to tissues/organs of diving animals is exer-
cised at the level of arteries rather than precapillary
arterioles (29), reducing the effect of vasodilator
metabolites released by ischemic tissues. Indeed,
near-zero conductance through the abdominal
aorta has been shown in seals during diving (18).
The delayed release of lactic acid during recovery
(FIGURE 1B) is attributed to a striking redistribu-
tion of blood away from muscle during submersion
and reperfusion after emersion. It is well known
that the sympathetic nervous system controls such
distribution of blood.

Numerous studies have shown that neurons in
the rostral ventrolateral medulla (RVLM) regulate
ABP by maintaining sympathetic tone. Moreover,
studies have implicated the RVLM as the brain
stem relay to the spinal cord for the baroreceptor
reflex (88, 164, 219) and somatosympathetic re-
flexes (20). The early increase in ABP with under-
water submersion activates the baroreflex but does
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not include baroreceptive circuitry until the RVLM
since bilateral injections of kynurenate made ei-
ther into the dorsolateral solitary nucleus or the
caudal ventrolateral medulla (164) greatly attenu-
ate the baroreflex but fail to modify responses from
nasal stimulation. However, similar injections
into the RVLM greatly reduce effects of nasal
stimulation on sympathetic nerve discharge but
not effects from baroreflex activation (164), since
baroreceptor circuits at this level utilize GABA as
a transmitter. The RVLM contains the C1 adren-
ergic cell group (209), and many of these neurons
(FIGURE 3C2) are activated by underwater sub-
mersion (163). However, both adrenergic and non-
adrenergic spinally projecting neurons in the
RVLM are responsive to nasal stimulation (164).
Moreover, ~62% of the same baroreceptive RVLM
neurons normally silenced by increases in ABP are
excited by nasal stimulation despite increases in
ABP, suggesting that the homeostatic baroreceptor
reflex is overridden. The fact that the vasoconstric-
tion imposed by underwater submersion is not
universal to all tissues suggests that a general sym-
pathetic activation does not occur. Moreover, re-
gional specificities to different vascular beds have
been proposed in the RVLM (48, 153, 154). Smaller
diving mammals such as rats are compatible with
laboratory experiments (159, 185) and can be uti-
lized to explore this phenomenon better.

Suprabulbar Control of the Diving
Response

Aquatic mammals have repeatedly shown that they
“control” the bradycardia induced, despite the fact
the heart is a visceral organ generally considered
under autonomic, or automatic, control. Indeed,
we initially decided to study the mammalian DR
after seeing that seals showed an abrupt bradycar-
dia before underwater submersion and a tachycar-
dia prior to emersion (32). Such control over their
“autonomic” nervous system has been noticed by
diving physiologists for some time (15, 16). Indeed,
seals often either show little bradycardia when div-
ing voluntarily, reduce heart rate in anticipation of
underwater submersion (32), induce a bradycardia
to auditory, photic, or painful stimulation (108), or
show an anticipatory tachycardia before emerging
(15, 32). Moreover, sea lions conditioned to adjust
their autonomic nervous systems to auditory or
visual commands suggest they may “will” brady-
cardia (200, 208), probably from suprabulbar sites.
Control of bradycardia develops through ontogeny
(37, 68, 86, 90, 100, 107, 157, 170), and minimum
HR is increased in older animals compared with
younger cohorts (86, 170) but has a caveat in that
dive duration is generally longer in mature ani-
mals that have more mature adaptations in
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blood volume, myoglobin, etc. Bradycardia of div-
ing is also variable in dolphins depending on be-
havior. If a submerged mammal is exercising, the
degree of bradycardia developed is dependent on
exercise levels (50, 171); the diving bradycardia is
modulated by behavior and exercise in a predict-
able manner (171).

Since underwater submergence is the usual stim-
ulus inducing the DR in awake animals, many inves-
tigators performed “forced” submersions, where the
animals were tethered on boards or placed in cages
and dunked underwater (54, 59, 94, 111, 113, 120,
125, 130, 131, 147, 185, 213, 216). Many of these
studies noted the hemodynamic responses were
subtly dissimilar to voluntary submersions (94,
111, 162, 244). HR generally reaches a nadir quickly
in forced submersions and remains depressed un-
til the animal surfaces. However, the bradycardia
of aquatic mammals diving voluntarily and with
but moderate exercise is more variable and less
intense than that seen in forced diving (54, 111,
119, 162, 185), but the bradycardia of involuntarily
dunked rats is not different than voluntarily diving
rats (185). Although such differences suggest neu-
ral control beyond the level of reflex and implicate
suprabulbar control in large aquatic mammals, it
suggests the response in the rodent is more reflex-
ive in nature.

It is possible that preventing an organism from
deciding its own fate by involuntary submersion
may induce either fear or stress in several species
(31, 78, 231, 233, 234, 257), and these emotions
may alter normal reflex responses. McCulloch and
colleagues (160) concluded that forced submer-
gence is stressful to both naive and trained rats,
but voluntary diving in trained rats is no more
stressful than being handled by humans. The bra-
dycardia seen in rats is locked tightly to the time
submerged, but hemodynamic changes were more
variable in dunked naive rats and included more
arrhythmias (183). It is of interest that co-activa-
tion of both parasympathetic and sympathetic car-
diac nerves induces cardiac arrhythmias (194, 195,
226). Although the bradycardia of voluntary diving
is vagally mediated and dominant, forced under-
water submersion stresses the animal and proba-
bly also activates the sympathetic nervous system
from sources beyond reflex diving. Perhaps the
numerous arrhythmias seen during forced diving
are induced by suprabulbar sources and counter
the bradycardia of underwater submersion.

It is of interest that cetaceans and pinnepeds
have brains that approach human brains in com-
plexity with highly convoluted cortices (65, 96, 97,
142, 143, 144, 145). Although the DR apparently has
minimal suprabulbar modulation in rodents, we
suggest suprabulbar neurons in higher species may
indeed direct autonomic behavior seen in the DR.

The importance of such control highlights deflec-
tion from dogma that control of the “autonomic”
nervous system is involuntary. Harnessing the su-
prabulbar circuits of origin that control diving
physiology may promote feedback therapies de-
signed to remedy high HR and hypertension asso-
ciated with anxiety.

Summary and Perspectives

The autonomic changes resulting from underwater
submersion are dramatic and swift, suggesting re-
flex circuitry with little integration and few syn-
apses in rodents. If the area of the rostral MDH
where primary afferent fibers innervating parana-
sal areas project is considered the locus from
which the cardiac, blood pressure, and respiratory
consequences of underwater immersion emanate,
the route of such fibers toward the brain stem
targets mediating the responses must be consid-
ered. First, the very small neurons found in the
aforementioned MDH neuropil are considered
the rostral extension of the substantia gelatinosa
(laminae I and II), which has been misplaced
dorsally and medially by the caudal pole of the
subnucleus interpolaris. Lamina II neurons are
very small, and very few have been shown to be
projection neurons. However, many with para-
nasal receptive fields indeed are projection neu-
rons going to cardiorespiratory brain stem nuclei,
implicating the importance of the DR and support-
ing a role in early mammalian evolution. We show
numerous projections from these neurons (see Ref.
184 and FIGURE 3D3) to areas of the medulla reg-
ulating cardiorespiratory behavior. These small
neurons also probably have very small axons see
(FIGURE 3D4); if they are below 1 pm in diameter,
they are beyond the resolution of the light micro-
scope, which implies their identify must be ob-
tained by other means.

That said, the increase in arterial blood pressure
with diving probably is mediated by very small
fibers projecting from neurons in the rostral MDH
to the RVLM. The caudal pressor area (239, 240)
also receives such projections (187) but apparently
does not mediate the increase in arterial blood
pressure since pressure increases are still seen with
nasal stimulation after inhibiting injections of gly-
cine, muscimol, or ibotenic acid (189) are placed in
this caudal pressor area. Although retrograde trans-
port of tracers injected into the RVLM is found in
numerous neurons in this paranasal part of the
MDH, such projections were not matched in inten-
sity by the relatively sparse anterorgrade transport
from the MDH (184). This perhaps also may be due
to the extremely small axons of these MDH neurons,
making them difficult to see with the light micro-
scope. The ventral respiratory column and other
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associated respiratory-related nuclei (e.g., ventrolat-
eral solitary nucleus, retrotrapezoid nucleus) were
all labeled using retrograde and anterograde trans-
port techniques, albeit sparsely with anterograde
methods and mostly by small-diameter fibers. Al-
though there were but few neurons labeled with
cFos in the ventral respiratory column, numerous
neurons considered presumptive chemoreceptors
were labeled. We suggest that apnea of diving is
induced by inhibitory MDH projections to the pre-
Botzinger complex, but this still must be proven.
The bradycardia of diving must at least partially be
relayed through the MDH, since it can be inhibited
after injections there but with the caveat that in-
jections of ibotenic acid into the nearby caudal
pressor area also eliminate the bradycardia to na-
sal stimulation. The role played by the extratri-
geminal projections of the AEN into the rostral and
caudal ventrolateral medulla must still be deci-
phered, but these also may augment the cardiovas-
cular responses.

The DR in humans often is deployed in biology/
physiology laboratories since HR is easily moni-
tored (19, 93). The HR responses of such exercises,
however, are variable, perhaps because of suprab-
ulbar control over this reflex behavior (253). Nev-
ertheless, the DR is prominent in human neonates
(82, 196) and is suggested as the etiology of “cold
water drownings” (80, 83, 91), the Sudden Infant
Death Syndrome (1, 133, 134, 152, 232), as well as
important in apnea attacks in children (61, 81,
117). The DR is the most powerful autonomic re-
flex known, and further study of this phenomenon,
especially its neural control (180), may be fruitful
for understanding how the brain controls auto-
nomic behavior. It is also important to explain why
the DR is universal in all vertebrates. Is the purpose
of this enigmatic response designed to preserve life
by conserving oxygen? Is it the “master switch of
life” (216)? Although neurophilosophers can de-
bate these issues, physiologists perhaps could ex-
plore genetic databases to determine whether code
was developed very early in the evolution of verte-
brates to promote species survival. The remarkable
mammalian diving response is a chapter worth
studying. ®
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